Açık gönderim teoremi (karmaşık analiz)
Karmaşık analizde açık gönderim teoremi, U, karmaşık düzlem C 'nin bağlantılı açık bir altkümesiyse ve f : U → C sabit olmayan holomorf bir fonksiyonsa, o zaman f 'nin açık gönderim olduğunu ifade eder (yani U 'nun açık altkümelerini C 'nin açık altkümelerine gönderir).
Açık gönderim teoremi, holomorfluk ve gerçel türevlenebilirlik arasındaki keskin farkı ortaya koyar. Mesela, gerçel sayılar üzerinde, f(x) = x2 türevlenebilir fonksiyonu açık bir gönderim değildir çünkü (-1,1) açık aralığının görüntüsü [0,1) yarıaçık aralığıdır.
Teorem, örneğin, sabit olmayan bir holomorf fonksiyonun açık bir diski bir doğrunun parçasına örten bir şekilde gönderemeyeceğini gösterir.
Kanıt
değiştirf:U → C sabit olmayan holomorf bir fonksiyon olsun ve karmaşık düzlemin bağlantılı bir açık altkümesi olsun. 'daki her noktanın 'nun bir iç noktası olduğunu göstermeliyiz; yani içindeki her noktanın içinde yer alan bir diskin içinde olduğunu göstermeliyiz.
içinde rastgele bir noktasını alalım. U açık olduğu için, bir bulabiliriz öyle ki z0 etrafında, d yarıçaplı kapalı diski tamamen U içinde yer alır. U bağlantılı olduğu ve f, U üzerinde sabit olmadığı için, f 'nin B üzerinde sabit olmadığını biliyoruz. Görüntü noktası 'ı ele alalım. olur ve , fonksiyonunun kökü olur.
g(z) 'nin sabit olmadığını biliyoruz ve d yi daha da azaltarak g(z) 'nin B içinde tek bir kökü olmasını sağlayabiliriz; çünkü, sabit olmayan holomorf fonksiyonların kökleri izoledir yani yalıktıktır. e, B 'nin sınırındaki z değerleri için |g(z)| 'nin minimum değeri olsun (pozitif sayı). (B 'nin sınırı çemberdir ve bu yüzden tıkız kümedir. |(g(z)| sürekli fonksiyondur. Böylece, ekstremum değer teoremi bu minimumun varlığını kanıtlar.) etrafındaki yarıçaplı diski ile gösterelim. Rouché teoremi, 'a uzaklığı 'den az olan her için ve 'nin B içinde aynı sayıda köke sahip olacağını ifade eder. Bu yüzden, içindeki her için, 'de olacak şekilde sadece bir tane vardır. Bu da, D diskinin 'nun altkümesi olan f(B) 'de yer aldığı anlamına gelir.
Kaynakça
değiştir- Rudin, Walter (1966), Real & Complex Analysis, McGraw-Hill, ISBN 0-07-054234-1