Matematikte birim öge, birim eleman, etkisiz eleman veya nötr eleman, bir kümenin özel bir ögesidir. Bir kümede herhangi bir ögeyle işleme girdiğinde yine aynı ögeyi verir. Genel olarak e ile gösterilir.

Her a A için öyle bir e A vardır ki ea=ae=a olur.

A kümesinde tanımlı bir işlemi için, bu kümedeki her eleman için olacak şekilde bir "e" elemanı varsa "e"ye işleminin etkisiz elemanı (ya da birim elemanı) denir.

Örneğin, toplama işleminin etkisiz elemanı 0 iken çarpma işlemininki 1 dir. Bu ögenin kümede biricik olduğu rahatlıkla gösterilebilir:

Diyelim bu koşulu sağlayan iki birim öge var: e ve e' . Eğer bu ikisini işleme sokarsak, e=ee'=e'e=e' olduğu görülür.

Örnekler

değiştir
küme işlem birim
reel sayılar + (toplama) 0
real sayılar · (çarpma) 1
negatif olmayan sayılar ab (üslü) 1 (yalnızca sağ birim)
tam sayılar (genişletilmiş rasyonellere
doğal sayılar ortak kat 1
doğal sayılar ortak bölen 0
m'ye-n'lik matrisler + (matris toplamı) sıfır matris
n'ye n'lik kare matris matris çarpımı In (birim matrisii)
m'ye n'lik matrisler   (Hadamard çarpımı) Jm, n (Birler matrisi)
bir M kümesindeki tüm fonksiyonlar ∘ (bileşke fonksiyon) birim fonksiyon
bir G grubundaki tüm dağılımlar ∗ (konvolüsyon) δ (Dirac delta fonksiyonu)
genişletilmiş reel sayılar minimum +∞
genişletilmiş reel sayılar maksimum −∞
bir M kümesinin alt kümeleri ∩ (kesişimi) M
kümeler ∪ (birleşimi) ∅ (boş küme)
koşullar, sıralamalar birleştirme boş koşul, boş liste
bir boolean cebri ∧ (mantıksal kesişim) ⊤ (doğru)
bir boolean cebri ∨ (mantıksal birleşim) ⊥ (yanlış)
bir boolean cebri ⊕ (veya değil) ⊥ (yanlış)
düğümler düğüm toplamı düğümsüz
kapalı manifold # (düğüm toplamı) S2
yalnızca {e, f}  iki ögesi ∗ şöyle tanımlanır;
ee = fe = e ve
ff = ef = f
hem e hem de f sol birimlerdir,
fakat sağ birim yoktur
iki taraflı birim yoktur