De Moivre formülü
Matematikte de Moivre formülü, 18. yüzyıl Fransız matematikçisi Abraham de Moivre anısına isimlendirilmiş ve herhangi bir karmaşık sayı (özellikle herhangi bir gerçel sayı x ve herhangi bir tam sayı n) için şu ifadenin geçerli olduğunu önerir:
Bu formülün önemi (burada önünde i sanal birim ifade ile verilmiş olan) karmaşık sayılar ile trigonometri arasındaki bağlantıyı açıklamasındadır.
Bu formülde "cos x + i sin x" bazen "cis x" olarak kısaltılabilir.
Formülün sol tarafi binom teoremi kullanarak açılıp gerçel kısmına ve sanal kısmına yeni şekil verilirse, cos(nx) ve sin(nx) için yalnızca sin(x) ve cos(x) kullanan uygulamalı matematikde çok önemli ifadeler elde edilir.
Bu formülün diğer bir uygulaması ise De Moivre sayısı adı verilen birimin köklerini (yani 1in köklerini) karmaşık sayılar (yani zn = 1 ise zkarmaşık sayıları) ile ifade edilmesini sağlamasıdır
Tarihi olarak başka şekilde ispat edilmekle beraber, de Moivre'in formülü Euler formülünü kullanarak hemen şöyle ispat edilebilir:
ve üstel yasaya göre
O halde Euler formülü ile,
- . olur.
İndüksiyon ile ispat
değiştirÜç değişik hal ele alınabilir:
Eğer n > 0 ise, matematiksel tümevarım ile şöyle ilerleyebiliriz.
Eğer n = 1 ise, sonuç açıkça geçerlidir. Hipotezimiz için, sonucun bir tam sayı olan k için geçerli olduğunu varsayalım. Yani varsayımımız şu olsun:
Şimdi n = k + 1 halini ele alalım:
Bundan, eğer sonucun, n = k için geçerli olması halinde, n = k + 1 için de geçerli olduğu anlamına varılır. Öyle ise, matematik endüksiyon prensipine göre, tüm pozitif tam sayılar için (yani n≥1 için) bu sonuç geçerli olur.
Eğer n = 0 ise, olduğu için ve konvansiyonel olarak olarak verildiği için, bu formül geçerlidir.
Eğer n < 0 ise, n = -m olduğu zaman bir pozitif tam sayı m ele alsın. O halde
Böylelikle, teorem nin tüm tam sayı değerleri için geçerlidir.
Kosinus ve sinus için tek tek formüller
değiştirKarmaşık sayıların eşitliğini gösterdiği için bu denklemin hem gerçel kısımları hem de sanal kısımları ayrı ayrı birbirine eşit olmalıdır. Eğer x (ve bundan dolayı ve ) gerçel sayılar ise, o zaman bu kısımların özdeşlikleri (taraf değiştirilerek) şöyle yazılabilir:
Bu denklemler xin karmaşık değerleri için geçerlidir. Buna neden, her iki tarafın da x in holomorf fonksiyonları olması ve gerçel eksende birbiriyle çakışan bu şekildeki iki fonksiyonun karmaşık düzeyde de mutlaka birbiriyle çakışması gereğidir.
Bu denklemlerin örnek ifadeleri olarak ve için şu sonuçlar çıkarılır:
için formülün sağ tarafı gerçekte değerli Çebişev polinomu olan ifadesinin n(cosx) değeridir.
Genelleştirme
değiştirBu formül yukarıda verilen hallerden daha geniş hallerde de geçerlidir. Eğer z ve w karmaşık sayılarsa, o halde
bir çokludeğerli fonksiyon olur ve
ise bir çokludeğerli fonksiyon olmaz. Böylece
ifadesi sunun bir parcasidir .
Uygulamalar
değiştirBu formül bir karmaşık sayı için ninci kökleri bulmak için kullanılabilir. Eğer bir karmaşık sayı ise bu polar koordinatlı olarak şu şekilde yazılabilir:
O halde
olur. Burada tam sayıdır. için tane değişik kök bulmak için nin den e aralığını incelemek gerekir.
Ayrıca bakınız
değiştirDış bağlantılar
değiştir- Abramowitzm,M. ve Stegun,I.A. (1964) Handbook of Mathematical Functions, New York, Dover Publications, say. 74 (ISBN 0-486-61272-4) (İngilizce)
- De Moivre's Theorem for Trig Identities8 Aralık 2008 tarihinde Wayback Machine sitesinde arşivlendi. haz.: Michael Croucher, Wolfram Gösterim Projesi (İngilizce)