Erdős–Mordell eşitsizliği

9 Ocak 2025 tarihinde kontrol edilmiş kararlı sürüm gösterilmektedir. İnceleme bekleyen 1 değişiklik bulunmaktadır.

Öklid geometrisinde, Erdős–Mordell eşitsizliği herhangi bir üçgeni ve içindeki noktası için, 'den kenarlara olan uzunlukların toplamının, 'den köşelere olan uzunlukların toplamının yarısına eşit veya daha az olduğunu belirten teoremdir. Teorem, adını Macar matematikçi Paul Erdős ve Amerika doğumlu İngiliz matematikçi Louis Mordell'den almıştır. Erdős (1935) eşitsizliği kanıtlama problemini ortaya attı; iki yıl sonra (Louis Mordell & D. F. Barrow 1937) tarafından bir kanıt sağlandı. Ancak bu çözüm çok basit değildi. Sonraki basit ispatlar daha sonra Kazarinoff (1957), Bankoff (1958) ve Alsina & Nelsen (2007) tarafından verilmiştir.

Barrow eşitsizliği, 'den kenarlara olan uzunlukların 'den , ve açıortaylarının kenarları kestiği noktalara kadar olan uzunlukları ile değiştirildiği Erdős–Mordell eşitsizliğinin güçlendirilmiş bir versiyonudur. Değiştirilen uzunluklar daha uzun olmasına rağmen, bunların toplamı yine de köşelere olan uzunlukların toplamının yarısından daha az veya buna eşittir.

Açıklama

değiştir
 
Erdős–Mordell eşitsizliği

 , verilen bir   üçgeni içerisinde keyfi bir nokta ve  ,  ,   ise  'den üçgenlerin kenarlarına çizilen dikmeler olsun. (Üçgen geniş açılı ise, bu diklerden biri üçgenin farklı bir kenarından geçebilir ve kenarlardan birini destekleyen yani dışa doğru uzatılan doğruda bitebilir.) Sonra söz konusu eşitsizlik aşağıdaki şekilde ifade edilir:

 

  üçgeninin kenarları, a   köşesinin karşısında, b   köşesinin karşısında ve c   köşesinin karşısında olsun, aynı zamanda  ,  ,  ,  ,  ,   olsun. İlk önce aşağıdaki ifadeyi kanıtlıyoruz;

 .

Bu aşağıdaki ifadeye eşdeğerdir:

 .

Sağ taraf   üçgeninin alanıdır, ancak sol tarafta r + z en azından üçgenin yüksekliğidir; sonuç olarak sol taraf, sağ taraftan daha küçük olamaz. Şimdi  'nin  'deki açıortaya göre simetrisini alalım.  'nin yansıması için cray + bx olduğunu buluruz. Benzer şekilde, bqaz + cx ve apbz + cy olduğu görülür. Bu eşitsizlikleri r, q ve p için çözersek:

 ,
 ,
 .

Üç ifadeyi birbirine ekleyerek,

 

bulunur. Pozitif bir sayının toplamı ve çarpmaya göre tersinin AO-GO eşitsizliğine göre en az 2 olması nedeniyle, teorem ispatlanmış olur. Eşitlik yalnızca eşkenar üçgen için geçerlidir ve bu durumda   merkez noktasıdır.

Başka bir güçlendirilmiş versiyon

değiştir

 , bir ( ) çemberi içine çizilmiş bir üçgen ve    'nin içindeki bir nokta olsun.   ise   noktasının   kenarları üzerine dik izdüşümleri olsun.     noktasının sırasıyla  'de ( )'ya teğetlere dik izdüşümleri olabilir, o zaman:

 

yazılabilir. Eşitlik ancak ve ancak   üçgeni eşkenar ise geçerlidir; (Dao, Nguyen & Pham 2016, Marinescu & Monea 2017)

Bir genelleme

değiştir

  dışbükey bir çokgen ve    'nin bir iç noktası olsun.  ,   noktasından   tepe noktasına olan uzaklık,     noktasından  kenarına olan uzaklık,     noktasından   kenarıyla kesişme noktasına kadar olan  açısının açıortay segmenti olsun, sonra (Lenhard 1961):

 

olarak yazılabilir.

Ayrıca bakınız

değiştir

Kaynakça

değiştir

Dış bağlantılar

değiştir

Konuyla ilgili yayınlar

değiştir
  • Kazarinoff, Donat K. A simple proof of the Erdős-Mordell inequality for triangles. Michigan Math. J. 4 (1957), No. 2, ss. 97-98, doi:10.1307/mmj/1028988998. Makale 19 Haziran 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  • Seannie Dar & Shay Gueron, A Weighted Erdös-Mordell Inequality, The American Mathematical Monthly Vol. 108, No. 2 (Feb., 2001), ss. 165-168, https://doi.org/10.2307/2695531, Makale
  • Liu, Jian and Zhang, Zhi-Hua (2004), An Erdös-Mordell Type Inequality on the Triangle, Araştırma Raporu 30 Eylül 2019 tarihinde Wayback Machine sitesinde arşivlendi.
  • Yu-Dong Wu, Chun-Lei Yu & Zhi-Hua Zhang, (2009), A Geometric Inequality of the Generalized Erdös-Mordell Type, Journal of Inequalities in Pure and Alliped Mathematics, issn: 1443-5756, Volume 10 (2009), Issue 4, Article 106, ss. 1-5, Makale 7 Temmuz 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  • Liu, J., (2011), A New Proof of the Erdos-Mordell Inequality. International Electronic Journal of Geometry 4, ss. 114-119, Makale
  • Jian Liu, (2015), Sharpened versions of the Erdös-Mordell inequality, Journal of Inequalities and Applications, 2015:206, doi:10.1186/s13660-015-0716-2, Makale 17 Kasım 2019 tarihinde Wayback Machine sitesinde arşivlendi.
  • Liu, Jian. (Apr 2018), Two New Weighted Erdős–Mordell Type Inequalities, Discrete & Computational Geometry; New York, Vol. 59, Issue: 3, ss. 707-724, doi:10.1007/s00454-017-9917-4
  • Jian Liu, (2019), New Refinements of the Erdös–Mordell Inequality and Barrow’s Inequality, Mathematics 2019, 7(8), 726; https://doi.org/10.3390/math7080726
  • Maja Petrovic, Branko Malesevic, Bojan Banjac, (2019), On the Erdos-Mordell Inequality for Triangles in Taxicab Geometry, Makale
  • George Tsintsifas, The Erdos-Mordell inequality, Makale