Gamma dağılımı

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

Gamma
Olasılık yoğunluk fonksiyonu
Gamma dağılımları için olasılık yoğunluk fonksiyonlari grafiği
Yığmalı dağılım fonksiyonu
Gamma dağılımları için yığmalı dağılım grafiği
Parametreler şekil (reel)
ölçek (reel)
Destek
Olasılık yoğunluk fonksiyonu (OYF)
Birikimli dağılım fonksiyonu (YDF)
Ortalama
Medyan basit kapalı form yok
Mod
Varyans
Çarpıklık
Fazladan basıklık
Entropi
Moment üreten fonksiyon (mf)
Karakteristik fonksiyon

Karakteristikler

değiştir

Bir rassal değişken olan Xin θ ölçek parametresi ve k şekil parametresi ile tanımlanmış bir gamma dağılımı ile ifade edilmesi için şu notasyon kullanılır:

 

Olasılık yoğunluk fonksiyonu

değiştir

Gamma dağılımının olasılık yoğunluk fonksiyonu şu şekilde bir gamma fonksiyonu ile ifade edilebilir:

 

Bu çeşit parametrelerle ifade edilme yukarıda verilen bilgi kutusunda ve grafiklerde kullanılmıştır.

Alternatif bir şekilde, gamma dağılımının olasılık yoğunluk fonksiyonu bir şekil parametresi   ile ölcek parametresinin tersi olan oran parametresi   kullanılarak şöyle elde edilir:

 
Eğer   bir pozitif tam sayı ise, o halde
 

Olasılık yoğunluk fonksiyonu her iki şekli de istatistikçiler tarafından yaygın olarak kullanılmaktadır.

Yığmalı dağılım fonksiyonu

değiştir

Yığmalı dağılım fonksiyonu bir tanzim edilmiş gamma fonksiyonudur ve bir tamamlanmamış gamma fonksiyonu şeklinde şöyle ifade edilir:

 

Özellikler

değiştir

Eğer i = 1, 2, ..., N için rassal değişken Xiin dağılımı bir Γ(αi, β) olursa; o halde

 

Ancak bütün Γ(αi, β) istatistiksel bağımsız olması gerekir.

Gamma dağılımı sonsuz bölünebilirlik özelliği gösterir.

Ölçekleme

değiştir

Herhangi bir t için tX bir Γ(k, tθ) dağılımı gösterir; bu ifade θnın bir ölçek parametresi olduğunu gösterir.

Üstel ailesi

değiştir

Gamma dağılımı iki-parametreli üstel ailesinin bir üyesidir ve doğal parametreler değerleri   ve  ; ve doğal istatistikleri   ve   olur.

Enformasyon entropisi

değiştir

Enformasyon entropisi şöyle verilir:

 
 
 

burada ψ(k) bir digama fonksiyonu olur.

Kullback–Leibler ayrılımı

değiştir

'Gerçek' dağılım olan Γ(α0, β0) ile yaklaşık fonksiyon olan Γ(α, β) arasındaki yönlendirilmiş Kullback-Leibler ayrılması şu fonksiyonla verilir:

 

Laplace dönüşümü

değiştir

Gamma dağılımının Laplace dönüşümü şudur:

 

Parametre tahmini

değiştir
 
Gama Olasılık Dağılımının 3B Gösterimi. Her Katman, 1,2,3,4,5 ve 6'ya eşit olan θ {\displaystyle \theta } 'nın farklı bir değeri içindir.

Maksimum olabilirlilik tahmini

değiştir

Birbirlerinden bağımsız ve aynı dağılım gösteren N sayıda gözlem,,  , için olabilirlik fonksiyonu sudur:

 

Bundan bir log-olabilirlilik fonksiyonu türetilebiliriz:

 

Bunun  'ya gore maksimim değerini bulmak için bu log-olabilirlilik fonksiyonunun birinci türevini alıp sıfıra eşitlersek, θ parametresi için maksimum-olabilirlik kestirimini buluruz:

 

Bunu tekrara log-degisebilirlilik fonksiyonuna koyarsak, elde edilen ifade su olur:

 

Bunu k'ye gore maksimumunu bulmak için birinci türevini alırız ve bunu sıfıra eşitleriz. Sonuç şudur:

 

Burada

 

olup bir digamam fonksiyonudur.

k için kapali-sekilli bir çözüm bulunmamaktadır. Bu fonksiyon numerik olarak, hesaplamaya uygun davranış gösterir ve bunun için bir numerik çözüm istenirse, örneğin numerik Newton Yöntemi, sonuçlar yeterli dakik olur. Bu numerik çözümler için ilk değer ya "momentler metodu" kullanılarak bulunur ya da su yaklaşım kullanılabilir:

 

Eğer şu ifadeyi kullanırsak

 

k yaklaşık şu değerdedir:

 

Bu genellikle gerçek değerden +/- %1,5 hatalı olabileceği bulunmuştur. Bu ilk tahminin Newton-Raphson yöntemi için iyileştirilmesi Choi ve Wette (1969) şöyle verilmiştir:

 

burada   trigamma fonksiyonunu (yani digamma fonksiyonunun birinci türevini) ifade eder.

Digamma ve trigamma fonksiyonlarını çok dakiklikle hesaplamak güç olabilir. Fakat, su verilen yaklaşım formülleri kullanarak birkaç önemli ondalikli sayıya kadar iyi yaklaşım sayıları bulmak imkânı vardır:

 

ve

 

Ayrıntılar için bakiniz Choi ve Wette (1969).

Bayes tipi minimum ortalama-kareli hata

değiştir

Bilinen değerde k ve bilinmeyen değerde ' , için theta için sonrasal olasılık yoğunluk fonksiyonu (  için standart ölçek-değişilmez öncel kullanarak) su elde edilir:

 

Su ifade verilsin

 

Bunun θ entegrasyonu değişkenlerin değiştirilmesi yöntemi kullanılarak mümkün olur. Bunun sonucunda 1/θ ifadesinin

 

parametreleri olan bir gamma dağılımı gösterdiği ortaya çıkartılır.

 

Momentler (m ile m = 0) orantısı alınarak hesaplanabilir:

 

Buna göre theta'nin sonsal dağılımının ortalama +/- standart sapma kestiriminin şöyle olur:

  +/-  

Gamma dağılım gösteren rassal değişken üretimi

değiştir

İlişkili dağılımlar

değiştir

Özel dağılımlar

değiştir
  •  , then  

-->

Diğerleri

değiştir
  • Eğer X bir Γ(k, θ) dağılımı gösterirse 1/X k ve θ−1

parametreleri olan bir ters-gamma dagilimi gösterir.

Kaynakça

değiştir
  • R. V. Hogg and A. T. Craig. Introduction to Mathematical Statistics, 4th ed. New York: Macmillan, 1978. (Bak Section 3.3.)
  • Eric W. Weisstein, Gamma distribution (MathWorld)
  • 23 Şubat 2008 tarihinde Wayback Machine sitesinde [https://web.archive.org/web/20080223135214/http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm arşivlendi.] Engineering Statistics El Kilavuzu.
  • S. C. Choi and R. Wette. (1969) Maximum Likelihood Estimation of the Parameters of the Gamma Distribution and Their Bias, Technometrics, 11(4) 683-69