Mahler eşitsizliği

Matematikte Mahler eşitsizliği iki sonlu dizinin terim bazında toplanmasıyla elde edilen dizinin geometrik ortalamasının bu sonlu dizilerin ayrı ayrı geometrik ortalamalarının toplamından büyük olduğunu ifade eden bir eşitsizliktir. Eşitsizlik, Minkowski eşitsizliği'nin sayma ölçüsü altında özel bir halidir ve Kurt Mahler'in adının taşımaktadır.

Eşitsizliğin ifadesi

değiştir

  için   pozitif gerçel sayılar olmak üzere

 

eşitsizliği sağlanır.[1]

İlk olarak AO-GO eşitsizliği kullanılarak,

 

ve

 

elde edilir. Daha sonra iki formül toplanarak,

 

olur. Sol taraftan   çekilerek istenen eşitsizlik elde edilir.

Ayrıca bakınız

değiştir

Kaynakça

değiştir
  1. ^ Daniel Sitaru (10 Aralık 2020). "A SIMPLE PROOF FOR MAHLER'S INEQUALITY". 27 Haziran 2024 tarihinde kaynağından arşivlendi. Erişim tarihi: 9 Ocak 2025. 

Dış bağlantılar

değiştir