Matematikte , Wallis çarpımı ,
π
{\displaystyle \pi }
sayısını sonsuz çarpım olarak veren bir ifadedir. 1656'da John Wallis tarafından yayınlanmıstır ve şu şekilde ifade edilmektedir:[ 1]
π
2
=
∏
n
=
1
∞
4
n
2
4
n
2
−
1
=
∏
n
=
1
∞
(
2
n
2
n
−
1
⋅
2
n
2
n
+
1
)
=
(
2
1
⋅
2
3
)
⋅
(
4
3
⋅
4
5
)
⋅
(
6
5
⋅
6
7
)
⋅
(
8
7
⋅
8
9
)
⋅
⋯
{\displaystyle {\begin{aligned}{\frac {\pi }{2}}&=\prod _{n=1}^{\infty }{\frac {4n^{2}}{4n^{2}-1}}=\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)\\[6pt]&={\Big (}{\frac {2}{1}}\cdot {\frac {2}{3}}{\Big )}\cdot {\Big (}{\frac {4}{3}}\cdot {\frac {4}{5}}{\Big )}\cdot {\Big (}{\frac {6}{5}}\cdot {\frac {6}{7}}{\Big )}\cdot {\Big (}{\frac {8}{7}}\cdot {\frac {8}{9}}{\Big )}\cdot \;\cdots \\\end{aligned}}}
Wallis bu sonsuz çarpımı enterpolasyon kullanarak türetmiştir; ancak, yöntemi titiz olarak kabul edilmemektedir. Daha modern bir çıkarım,
∫
0
π
sin
n
x
d
x
{\displaystyle \int _{0}^{\pi }\sin ^{n}x\,dx}
integrali n tek ve çift değerler alırken incelenerek elde edilebilir.
Wallis integrallerinin bir hali olan
I
(
n
)
=
∫
0
π
sin
n
x
d
x
{\displaystyle I(n)=\int _{0}^{\pi }\sin ^{n}x\,dx}
tanımlayalım. Kısmi integral yöntemi kullanarak
u
=
sin
n
−
1
x
⇒
d
u
=
(
n
−
1
)
sin
n
−
2
x
cos
x
d
x
d
v
=
sin
x
d
x
⇒
v
=
−
cos
x
{\displaystyle {\begin{aligned}u&=\sin ^{n-1}x\\\Rightarrow du&=(n-1)\sin ^{n-2}x\cos x\,dx\\dv&=\sin x\,dx\\\Rightarrow v&=-\cos x\end{aligned}}}
⇒
I
(
n
)
=
∫
0
π
sin
n
x
d
x
=
−
sin
n
−
1
x
cos
x
|
0
π
−
∫
0
π
(
−
cos
x
)
(
n
−
1
)
sin
n
−
2
x
cos
x
d
x
=
0
+
(
n
−
1
)
∫
0
π
cos
2
x
sin
n
−
2
x
d
x
,
n
>
1
=
(
n
−
1
)
∫
0
π
(
1
−
sin
2
x
)
sin
n
−
2
x
d
x
=
(
n
−
1
)
∫
0
π
sin
n
−
2
x
d
x
−
(
n
−
1
)
∫
0
π
sin
n
x
d
x
=
(
n
−
1
)
I
(
n
−
2
)
−
(
n
−
1
)
I
(
n
)
=
n
−
1
n
I
(
n
−
2
)
⇒
I
(
n
)
I
(
n
−
2
)
=
n
−
1
n
{\displaystyle {\begin{aligned}\Rightarrow I(n)&=\int _{0}^{\pi }\sin ^{n}x\,dx\\[6pt]{}&=-\sin ^{n-1}x\cos x{\Biggl |}_{0}^{\pi }-\int _{0}^{\pi }(-\cos x)(n-1)\sin ^{n-2}x\cos x\,dx\\[6pt]{}&=0+(n-1)\int _{0}^{\pi }\cos ^{2}x\sin ^{n-2}x\,dx,\qquad n>1\\[6pt]{}&=(n-1)\int _{0}^{\pi }(1-\sin ^{2}x)\sin ^{n-2}x\,dx\\[6pt]{}&=(n-1)\int _{0}^{\pi }\sin ^{n-2}x\,dx-(n-1)\int _{0}^{\pi }\sin ^{n}x\,dx\\[6pt]{}&=(n-1)I(n-2)-(n-1)I(n)\\[6pt]{}&={\frac {n-1}{n}}I(n-2)\\[6pt]\Rightarrow {\frac {I(n)}{I(n-2)}}&={\frac {n-1}{n}}\\[6pt]\end{aligned}}}
Şimdi, kolaylık olması açısından iki değişken ikâmesi yaparak şunu elde edelim:
I
(
2
n
)
=
2
n
−
1
2
n
I
(
2
n
−
2
)
{\displaystyle I(2n)={\frac {2n-1}{2n}}I(2n-2)}
I
(
2
n
+
1
)
=
2
n
2
n
+
1
I
(
2
n
−
1
)
{\displaystyle I(2n+1)={\frac {2n}{2n+1}}I(2n-1)}
I
(
0
)
{\displaystyle I(0)}
ve
I
(
1
)
{\displaystyle I(1)}
değerleri sonradan kullanmak üzere hemen ve kolaylıkla hesapalanabilir.
I
(
0
)
=
∫
0
π
d
x
=
x
|
0
π
=
π
I
(
1
)
=
∫
0
π
sin
x
d
x
=
−
cos
x
|
0
π
=
(
−
cos
π
)
−
(
−
cos
0
)
=
−
(
−
1
)
−
(
−
1
)
=
2
{\displaystyle {\begin{aligned}I(0)&=\int _{0}^{\pi }dx=x{\Biggl |}_{0}^{\pi }=\pi \\[6pt]I(1)&=\int _{0}^{\pi }\sin x\,dx=-\cos x{\Biggl |}_{0}^{\pi }=(-\cos \pi )-(-\cos 0)=-(-1)-(-1)=2\\[6pt]\end{aligned}}}
Çift değerler için hesaplamak için
I
(
2
n
)
{\displaystyle I(2n)}
bağlantısını tekrarlayarak kullanıyoruz ve daha önce hesaplanan
I
(
0
)
{\displaystyle I(0)}
değerinde duruyoruz:
I
(
2
n
)
=
∫
0
π
sin
2
n
x
d
x
=
2
n
−
1
2
n
I
(
2
n
−
2
)
=
2
n
−
1
2
n
⋅
2
n
−
3
2
n
−
2
I
(
2
n
−
4
)
{\displaystyle I(2n)=\int _{0}^{\pi }\sin ^{2n}x\,dx={\frac {2n-1}{2n}}I(2n-2)={\frac {2n-1}{2n}}\cdot {\frac {2n-3}{2n-2}}I(2n-4)}
=
2
n
−
1
2
n
⋅
2
n
−
3
2
n
−
2
⋅
2
n
−
5
2
n
−
4
⋅
⋯
⋅
5
6
⋅
3
4
⋅
1
2
I
(
0
)
=
π
∏
k
=
1
n
2
k
−
1
2
k
{\displaystyle ={\frac {2n-1}{2n}}\cdot {\frac {2n-3}{2n-2}}\cdot {\frac {2n-5}{2n-4}}\cdot \cdots \cdot {\frac {5}{6}}\cdot {\frac {3}{4}}\cdot {\frac {1}{2}}I(0)=\pi \prod _{k=1}^{n}{\frac {2k-1}{2k}}}
Tek değerler için de benzer bir yöntem takip edilebilir ve
I
(
1
)
{\displaystyle I(1)}
değerinde durulur:
I
(
2
n
+
1
)
=
∫
0
π
sin
2
n
+
1
x
d
x
=
2
n
2
n
+
1
I
(
2
n
−
1
)
=
2
n
2
n
+
1
⋅
2
n
−
2
2
n
−
1
I
(
2
n
−
3
)
{\displaystyle I(2n+1)=\int _{0}^{\pi }\sin ^{2n+1}x\,dx={\frac {2n}{2n+1}}I(2n-1)={\frac {2n}{2n+1}}\cdot {\frac {2n-2}{2n-1}}I(2n-3)}
=
2
n
2
n
+
1
⋅
2
n
−
2
2
n
−
1
⋅
2
n
−
4
2
n
−
3
⋅
⋯
⋅
6
7
⋅
4
5
⋅
2
3
I
(
1
)
=
2
∏
k
=
1
n
2
k
2
k
+
1
{\displaystyle ={\frac {2n}{2n+1}}\cdot {\frac {2n-2}{2n-1}}\cdot {\frac {2n-4}{2n-3}}\cdot \cdots \cdot {\frac {6}{7}}\cdot {\frac {4}{5}}\cdot {\frac {2}{3}}I(1)=2\prod _{k=1}^{n}{\frac {2k}{2k+1}}}
Ayrıca,
sin
x
≤
x
{\displaystyle \sin {x}\leq x}
gerçeğine dayanarak
sin
2
n
+
1
x
≤
sin
2
n
x
≤
sin
2
n
−
1
x
,
0
≤
x
≤
π
{\displaystyle \sin ^{2n+1}x\leq \sin ^{2n}x\leq \sin ^{2n-1}x,0\leq x\leq \pi }
⇒
I
(
2
n
+
1
)
≤
I
(
2
n
)
≤
I
(
2
n
−
1
)
{\displaystyle \Rightarrow I(2n+1)\leq I(2n)\leq I(2n-1)}
olduğunu gözlemliyoruz. Her iki tarafı
I
(
2
n
+
1
)
{\displaystyle I(2n+1)}
ile bölerek ve ayrıca
I
(
2
n
)
=
2
n
−
1
2
n
I
(
2
n
−
2
)
{\displaystyle I(2n)={\frac {2n-1}{2n}}I(2n-2)}
ve
I
(
2
n
+
1
)
=
2
n
2
n
+
1
I
(
2
n
−
1
)
{\displaystyle I(2n+1)={\frac {2n}{2n+1}}I(2n-1)}
bağlantılarını kullanarak
⇒
1
≤
I
(
2
n
)
I
(
2
n
+
1
)
≤
I
(
2
n
−
1
)
I
(
2
n
+
1
)
=
2
n
+
1
2
n
{\displaystyle \Rightarrow 1\leq {\frac {I(2n)}{I(2n+1)}}\leq {\frac {I(2n-1)}{I(2n+1)}}={\frac {2n+1}{2n}}}
elde ediyoruz. Sıkıştırma teoremi ile
⇒
lim
n
→
∞
I
(
2
n
)
I
(
2
n
+
1
)
=
1
{\displaystyle \Rightarrow \lim _{n\rightarrow \infty }{\frac {I(2n)}{I(2n+1)}}=1}
elde edilir. Yani,
lim
n
→
∞
I
(
2
n
)
I
(
2
n
+
1
)
=
π
2
lim
n
→
∞
∏
k
=
1
n
(
2
k
−
1
2
k
⋅
2
k
+
1
2
k
)
=
1
{\displaystyle \lim _{n\rightarrow \infty }{\frac {I(2n)}{I(2n+1)}}={\frac {\pi }{2}}\lim _{n\rightarrow \infty }\prod _{k=1}^{n}\left({\frac {2k-1}{2k}}\cdot {\frac {2k+1}{2k}}\right)=1}
⇒
π
2
=
∏
k
=
1
∞
(
2
k
2
k
−
1
⋅
2
k
2
k
+
1
)
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋅
⋯
{\displaystyle \Rightarrow {\frac {\pi }{2}}=\prod _{k=1}^{\infty }\left({\frac {2k}{2k-1}}\cdot {\frac {2k}{2k+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot \cdots }
elde edilir.
Sinüs fonksiyonu için Euler'in sonsuz çarpımını kullanarak kanıt
değiştir
Yukarıdaki ispat genellikle modern kalkülüs ders kitaplarında yer alsa da, geriye dönüp bakıldığında Wallis çarpımı, sinüs fonksiyonu için daha sonra elde edilmişl olan Euler sonsuz çarpımının kolay bir sonucu olarak ortaya çıkar.
sin
x
x
=
∏
n
=
1
∞
(
1
−
x
2
n
2
π
2
)
{\displaystyle {\frac {\sin x}{x}}=\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{n^{2}\pi ^{2}}}\right)}
x
=
π
2
{\displaystyle x={\frac {\pi }{2}}}
olsun. O zaman,
⇒
2
π
=
∏
n
=
1
∞
(
1
−
1
4
n
2
)
⇒
π
2
=
∏
n
=
1
∞
(
4
n
2
4
n
2
−
1
)
=
∏
n
=
1
∞
(
2
n
2
n
−
1
⋅
2
n
2
n
+
1
)
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋯
{\displaystyle {\begin{aligned}\Rightarrow {\frac {2}{\pi }}&=\prod _{n=1}^{\infty }\left(1-{\frac {1}{4n^{2}}}\right)\\[6pt]\Rightarrow {\frac {\pi }{2}}&=\prod _{n=1}^{\infty }\left({\frac {4n^{2}}{4n^{2}-1}}\right)\\[6pt]&=\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdots \end{aligned}}}
[ 1]
Riemann zeta fonksiyonunun sıfır noktasında türevi
değiştir
Riemann zeta fonksiyonu ve Dirichlet eta fonksiyonu şu şekilde tanımlanabilir:[ 1]
ζ
(
s
)
=
∑
n
=
1
∞
1
n
s
,
ℜ
(
s
)
>
1
η
(
s
)
=
(
1
−
2
1
−
s
)
ζ
(
s
)
=
∑
n
=
1
∞
(
−
1
)
n
−
1
n
s
,
ℜ
(
s
)
>
0
{\displaystyle {\begin{aligned}\zeta (s)&=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}},\Re (s)>1\\[6pt]\eta (s)&=(1-2^{1-s})\zeta (s)\\[6pt]&=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{n^{s}}},\Re (s)>0\end{aligned}}}
Son seriye Euler dönüşümü uygulandığında aşağıdaki elde edilir:
η
(
s
)
=
1
2
+
1
2
∑
n
=
1
∞
(
−
1
)
n
−
1
[
1
n
s
−
1
(
n
+
1
)
s
]
,
ℜ
(
s
)
>
−
1
⇒
η
′
(
s
)
=
(
1
−
2
1
−
s
)
ζ
′
(
s
)
+
2
1
−
s
(
ln
2
)
ζ
(
s
)
=
−
1
2
∑
n
=
1
∞
(
−
1
)
n
−
1
[
ln
n
n
s
−
ln
(
n
+
1
)
(
n
+
1
)
s
]
,
ℜ
(
s
)
>
−
1
{\displaystyle {\begin{aligned}\eta (s)&={\frac {1}{2}}+{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\left[{\frac {1}{n^{s}}}-{\frac {1}{(n+1)^{s}}}\right],\Re (s)>-1\\[6pt]\Rightarrow \eta '(s)&=(1-2^{1-s})\zeta '(s)+2^{1-s}(\ln 2)\zeta (s)\\[6pt]&=-{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\left[{\frac {\ln n}{n^{s}}}-{\frac {\ln(n+1)}{(n+1)^{s}}}\right],\Re (s)>-1\end{aligned}}}
⇒
η
′
(
0
)
=
−
ζ
′
(
0
)
−
ln
2
=
−
1
2
∑
n
=
1
∞
(
−
1
)
n
−
1
[
ln
n
−
ln
(
n
+
1
)
]
=
−
1
2
∑
n
=
1
∞
(
−
1
)
n
−
1
ln
n
n
+
1
=
−
1
2
(
ln
1
2
−
ln
2
3
+
ln
3
4
−
ln
4
5
+
ln
5
6
−
⋯
)
=
1
2
(
ln
2
1
+
ln
2
3
+
ln
4
3
+
ln
4
5
+
ln
6
5
+
⋯
)
=
1
2
ln
(
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
⋯
)
=
1
2
ln
π
2
⇒
ζ
′
(
0
)
=
−
1
2
ln
(
2
π
)
{\displaystyle {\begin{aligned}\Rightarrow \eta '(0)&=-\zeta '(0)-\ln 2=-{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\left[\ln n-\ln(n+1)\right]\\[6pt]&=-{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\ln {\frac {n}{n+1}}\\[6pt]&=-{\frac {1}{2}}\left(\ln {\frac {1}{2}}-\ln {\frac {2}{3}}+\ln {\frac {3}{4}}-\ln {\frac {4}{5}}+\ln {\frac {5}{6}}-\cdots \right)\\[6pt]&={\frac {1}{2}}\left(\ln {\frac {2}{1}}+\ln {\frac {2}{3}}+\ln {\frac {4}{3}}+\ln {\frac {4}{5}}+\ln {\frac {6}{5}}+\cdots \right)\\[6pt]&={\frac {1}{2}}\ln \left({\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot \cdots \right)={\frac {1}{2}}\ln {\frac {\pi }{2}}\\\Rightarrow \zeta '(0)&=-{\frac {1}{2}}\ln \left(2\pi \right)\end{aligned}}}