Kalkülüste Taylor teoremi, türevi tanımlı bir işleve bir nokta çevresinde, katsayıları yalnızca işlevin o noktadaki türevine bağlı olan polinomlar cinsinden bir yaklaştırma dizisi üreten bir sonuçtur. Teorem, yaklaştırma hesaplamalarındaki hata payına ilişkin kesin sonuçlar da verebilmektedir. Brook Taylor adlı matematikçinin 1712 yılında yaptığı çalışmalarından[1] ötürü ismi bu şekilde anılan teoremin aslında bundan 41 yıl önce (1671 yılında) James Gregory tarafından bulunduğu bilinmektedir.

Orijin çevresinde üstel işlevi (sürekli kırmızı çizgi) ve karşılık gelen dördüncü dereceden Taylor polinomu (kesikli yeşil çizgi)

Taylor teoremine göre k defa türevlenebilir bir fonksiyona, verilen bir noktada yakınsayan k derece polinoma Taylor polinomu denir. Birinci derece Taylor polinomu doğrusal yaklaşım (İngilizcelinear approximation) olarak, ikinci derece Taylor polinomuysa karesel yaklaşım (İngilizcequadratic approximation) olarak da bilinir.[2]

 
f(x) = ex (mavi) ve onun x=0 noktasındaki doğrusal yaklaşımı P1(x) = 1 + x (kırmızı).

Eğer f(x) gerçel fonksiyonu x = a noktasında türevlenebilir ise, bu noktada doğrusal yaklaşımı var demektir. Dolayısıyla, aşağıdaki gibi bir h1(x) fonksiyonu vardır:

 

Burada

 

terimi, f(x)'in x = a noktasındaki doğrusal yaklaşımıdır ve grafiği f(x)'e teğettir. Yaklaşım hatası aşağıdaki gibi hesaplanır:

 

x değişkeni a değerine yaklaştıkça, bu hata  'ten daha hızlı şekilde sıfıra yaklaşır, dolayısıyla   yaklaşımı kullanışlıdır.

 
f(x) = ex (mavi) e onun x=0 noktasındaki karesel yaklaşımı P2(x) = 1 + x + x2/2 (kırmızı). Hata payındaki düşüşe dikkat ediniz.

Daha iyi bir tahmin bulmak için f(x)'e bir karesel polinom yaklaştırabiliriz:

 

f(x)'in x = a'da yalnız bir türevini eşleştirmek yerine, hem birinci hem de ikinci türevlerini bu polinomla temsil edebiliriz.

Taylor teoremine göre, karesel yaklaşım x=a'nın yeterince küçük bir mahalinde doğrusal yaklaşımdan daha isabetli bir tahmin sunar. Aşağıdaki yaklaşıma göre

 

Hata değeri

 

x değişkeni a değerine yaklaştıkça,  'den daha hızlı şekilde sıfıra yaklaşır.

Bu şekilde daha üst dereceden polinomlar kullanarak daha doğru bir yaklaşım elde edilebilir. Bunun sebebi, yaklaşım polinomunun verilen noktada f'nin daha üst dereceden türevleriyle eşleşmesidir.

Genel olarak, x a'ya yaklaşırken, k dereceden bir yaklaşım polinomunun hatasının sıfıra yaklaşma hızı,  'nin yaklaşma hızından daha fazladır. Ancak, sonsuz derecede türevlenebilir olsa dahi isabetli bir yaklaşımı bulunmayan fonksiyonlar da vardır. Bu fonksiyonların x = a'da analitik olmadığı söylenir. Yani fonksiyon bu nokta ve çevresinde türevleriyle belirlenemez.

Tek değişkenli Taylor teoremi

değiştir

Taylor teoreminin en basit halinin açık ifadesi şöyledir:[3][4][5]

k ≥ 1 bir tam sayı ve f : RR aR noktasında k defa türevlenebilir bir fonksiyon olsun. Öyleyse aşağıdaki tanıma sahip bir hk : RR fonksiyonu vardır:
 
ve
 
Buna kalanın Peano biçimi denir.

Taylor teoremindeki polinom f fonksiyonunun a noktasındaki k dereceden Taylor polinomudur:

 

Taylor polinomu biricik "asimtotik en uygun" polinomdur. Yani, aşağıdaki gibi hk : RR fonksiyonu ve k dereceden polinom p varsa

 

o halde p = Pk'dir. Taylor teoremi kalan terim'in asimptotik davranışını ifade eder:

 

Bu terim, f bir Taylor polinomuyla tahminlendiğindeki yaklaşım hatasıdır.

Ayrıca bakınız

değiştir

Kaynakça

değiştir
  1. ^ Taylor, Brook (1715). Methodus Incrementorum Directa et Inversa [Direct and Reverse Methods of Incrementation] (Latince). p. 21–23 (Prop. VII, Thm. 3, Cor. 2).  İngilizce çevirisi: Struik, D. J. (1969). A Source Book in Mathematics 1200–1800. Cambridge, Massachusetts: Harvard University Press. ss. 329-332. 
  2. ^ "Linear and quadratic approximation" (PDF). 11 Kasım 2013. 18 Ekim 2021 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 18 Ekim 2021. 
  3. ^ Genocchi, Angelo; Peano, Giuseppe (1884), Calcolo differenziale e principii di calcolo integrale, (N. 67, pp. XVII–XIX): Fratelli Bocca ed. 
  4. ^ Spivak, Michael (1994), Calculus, 3rd, Houston, TX: Publish or Perish, s. 383, ISBN 978-0-914098-89-8 
  5. ^ Hazewinkel, Michiel, (Ed.) (2001), "Taylor formula", Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104 

Dış bağlantılar

değiştir