Matematiğin zaman çizelgesi

Zaman çizelgesi
4 Ekim 2024 tarihinde kontrol edilmiş kararlı sürüm gösterilmektedir. İnceleme bekleyen 2 değişiklik bulunmaktadır.

Bu, saf ve uygulamalı matematik tarihinin bir zaman çizelgesidir.

Retorik dönem

değiştir

MÖ 1000'den önce

değiştir

Aksak ritme sahip dönem

değiştir

MÖ 1. binyıl

değiştir
  • y. MÖ 1000 - Mısırlılar tarafından kullanılan basit kesirler. Bununla birlikte, yalnızca birim kesirler kullanılır (yani pay olarak 1 olanlar) ve diğer kesirlerin değerlerine yaklaşmak için interpolasyon tabloları kullanılır.[10]
  • MÖ 1. binyılın ilk yarısı - Vedik Hindistan - Yajnavalkya, Shatapatha Brahmana adlı eserinde güneş ve ayın hareketlerini anlatıyor ve güneş ile ayın hareketlerini senkronize etmek için 95 yıllık bir döngü teklif etti.
  • MÖ 800 - Baudhayana tarafından yazılan Vedik Sanskritçe geometrik bir metin olan Baudhayana Sulba Sutra’sı, ikinci dereceden denklemler içerir ve ikinin karekökünü beş ondalık basamağa kadar doğru bir şekilde hesaplar.
  • y. MÖ 8. yüzyıl - Dört Hindu Veda'dan biri olan Yajur Veda, en eski sonsuzluk kavramını içerir ve "sonsuzluktan bir parçayı çıkarırsanız veya sonsuza bir parça eklerseniz, yine de sonsuzluk kalır" der.
  • MÖ 9. yüzyıl - İkili sayı'nın en eski referansı I Ching (Çin)'de bulunur.
  • MÖ 1046 - MÖ 256 - Çin, Zhoubi Suanjing, aritmetik, geometrik algoritmalar ve ispatlar.
  • MÖ 624 - MÖ 546 - Yunanistan, Miletli Thales'in kendisine atfedilen çeşitli teoremleri vardır.
  • y. MÖ 600 - Yunanistan, diğer Vedik "Sulba Sutraları" (Sanskritçe'de "kirişler kuralı") Pisagor üçlülerini kullandı, bir dizi geometrik kanıt içerir ve π'nin yaklaşık değeri olarak 3,16'yı alır.
  • MÖ 1. binyılın ikinci yarısı - Üçüncü mertebeden benzersiz normal sihirli karesi olan Lo Shu Karesi, Çin'de keşfedildi.
  • MÖ 530 - Yunanistan, Pisagor önermeli geometri ve titreşen lir dizilerini inceledi; grubu ayrıca ikinin karekökünün irrasyonelliğini de keşfetti.
  • y. MÖ 510 - Yunanistan, Anaksagoras
  • y. MÖ 500 - Hint gramerci Pānini, başlangıçta Sanskrit dil bilgisini sistematikleştirmek amacıyla üst kuralların, dönüşümlerin ve özyinelemelerin kullanımını içeren Astadhyayi’yi yazdı.
  • y. MÖ 500 - Yunanistan, Sakız Adalı Oenopides
  • MÖ 470 - MÖ 410 - Yunanistan, Sakız Adalı Hipokrat çemberi/daireyi kareleştirmek için ay (lune)'ları kullanır.
  • MÖ 490 - MÖ 430 - Yunanistan, Elealı Zeno, Zeno'nun paradoksları
  • MÖ 5. yüzyıl - Hindistan, Apastamba, başka bir Vedik Sanskrit geometrik metni olan Apastamba Sulba Sutra’sının yazarı, dairenin kareleştirilmesi girişiminde bulunur ve ayrıca 2'nin karekökünü beş ondalık basamağına kadar doğru hesaplar.
  • MÖ 5. yüzyıl- Yunanistan, Cyreneli Theodorus
  • 5. yüzyıl - Yunanistan, Sofist Antiphon
  • MÖ 460 - MÖ 370 - Yunanistan, Demokritos
  • MÖ 460 - MÖ 399 - Yunanistan, Hippias
  • 5. yüzyıl (geç) - Yunanistan, Heraklealı Bryson
  • MÖ 428 - MÖ 347 - Yunanistan, Archytas
  • MÖ 423 - MÖ 347 - Yunanistan, Platon
  • MÖ 417 - MÖ 317 - Yunanistan, Theaetetus (matematikçi)
  • y. MÖ 400 - Hindistan, Jaina matematikçileri, tüm sayıları üç küme halinde sınıflandıran matematiksel bir metin olan Surya Prajinapti'yi yazdı: sayılabilir, sayısız ve sonsuz. Aynı zamanda beş farklı sonsuzluk türünü tanır: bir ve iki yönde sonsuz, alanda sonsuz, her yerde sonsuz ve sonsuz olarak sonsuz.
  • MÖ 408 - MÖ 355 - Yunanistan, Knidoslu Eudoxus
  • MÖ 400 - MÖ 350 - Yunanistan, Thymaridas
  • MÖ 395 - MÖ 313 - Yunanistan, Xenocrates
  • MÖ 390 - MÖ 320 - Yunanistan, Dinostratus
  • 380–290 - Yunanistan, Pitaneli Autolycus
  • 370 BC - Yunanistan, Eudoxus alan belirleme için tüketme yöntemini ifade eder.
  • MÖ 370 - MÖ 300 - Yunanistan, Yaşlı Aristaeus
  • MÖ 370 - MÖ 300 - Yunanistan, Callippus
  • MÖ 350 - Yunanistan, Aristoteles Organon'da mantıksal akıl yürütmeyi tartışır.
  • MÖ 4. yüzyıl - Hint metinleri "boşluk (void)" (sıfır) kavramına atıfta bulunmak için Sanskritçe "Shunya" sözcüğünü kullanır.
  • MÖ 330 - Çin geometrisi üzerine bilinen en eski eser olan Mo Jing derlendi.
  • MÖ 310 - MÖ 230 - Yunanistan, Sisamlı Aristarkus
  • MÖ 390 - MÖ 310 - Yunanistan, Pontuslu Heraklides
  • MÖ 380 - MÖ 320 - Yunanistan, Menaechmus
  • MÖ 300 - Hindistan, Hindistan'daki Jain matematikçileri, kombinasyonlarla ilgili en eski bilgileri içeren Bhagabati Sutra'yı yazdı.
  • MÖ 300 - Yunanistan, Öklid'in Elemanları adlı çalışmasında geometriyi aksiyomatik bir sistem olarak inceler, asal sayıların sonsuzluğunu kanıtlar ve Öklid algoritmasını sunar; Catoptrics'te yansıma yasasını belirtir ve aritmetiğin temel teoremini kanıtlar.
  • y. M.Ö. 300 - Hindistan, Brahmi rakamları (ortak modern 10'luk sayı sisteminin atası)
  • MÖ 370 - MÖ 300 - Yunanistan, Rodoslu Eudemus şu an kaybolmuş olan aritmetik, geometri ve astronomi tarihleri üzerine çalışıyor.[11]
  • MÖ 300 - Mezopotamya, Babilliler ilk hesap makinesi olan abaküsü icat etti.
  • y. MÖ 300 - Hint matematikçi Pingala, sıfırın ilk Hint kullanımını bir rakam olarak (bir noktayla gösterilir) içeren ve aynı zamanda Fibonacci sayılarının ve Pascal üçgeninin ilk kullanımıyla birlikte bir ikili sayı sisteminin bir açıklamasını sunan Chhandah-shastra'yı yazar.
  • MÖ 280 - MÖ 210 - Yunanistan, Nicomedes (matematikçi)
  • MÖ 280 - MÖ 220 - Yunanistan, Bizanslı Filon
  • MÖ 280 - MÖ 220 - Yunanistan, Samoslu Conon
  • MÖ 279 - MÖ 206 - Yunanistan, Chrysippus
  • y. MÖ 3. yüzyıl - Hindistan, Kātyāyana
  • MÖ 250 - MÖ 190 - Yunanistan, Dionysodorus
  • MÖ 262 - MÖ 198 - Yunanistan, Pergeli Apollonius
  • MÖ 260 - Yunanistan, Arşimet, π değerinin 3 + 1/7 (yaklaşık 3,1429) ve 3 + 10/71 (yaklaşık 3,1408) arasında olduğunu, bir dairenin alanının π ile dairenin yarıçapının karesinin çarpımına eşit olduğunu kanıtladı ve bir parabol ile bir düz çizginin çevrelediği alanın eşit tabanı ve yüksekliği olan bir üçgenin alanıyla 4/3'ünün çarpımıdır. Ayrıca 3'ün karekökünün değerinin çok doğru bir tahminini verdi.
  • y. MÖ 250 - Geç dönem Olmekler, Yeni Dünya'daki Batlamyus'tan birkaç yüzyıl önce gerçek bir sıfır (kabuk glifi) kullanmaya başlamıştı bile. Bkz. 0 (sayı).
  • MÖ 240 - Yunanistan, Eratosthenes asal sayıları hızlı bir şekilde izole etmek için elek algoritmasını kullanıyor.
  • MÖ 240 - MÖ 190 - Yunanistan, Diocles (matematikçi)
  • MÖ 225 - Yunanistan, Pergalı Apollonius Konik Kesitler Üzerine (On Conic Sections) adlı eserini yazıyor ve elips, parabol ve hiperbole isim veriyor.
  • MÖ 202 - MÖ 186 - Çin, Matematiksel bir inceleme olan Sayılar ve Hesaplama Kitabı (Book on Numbers and Computation) Han Hanedanlığı'nda yazılmıştır.
  • MÖ 200 - MÖ 140 - Yunanistan, Zenodorus (matematikçi) MÖ 150 - Hindistan, Hindistan'daki Jain matematikçileri, sayılar teorisi, aritmetik işlemler, geometri, kesirlerle işlemler, basit denklemler, kübik denklemler, dördüncü dereceden denklemler ve permütasyonlar ve kombinasyonlar üzerine çalışmaları içeren Sthananga Sutra'yı yazdılar.
  • y. MÖ 150 - Yunanistan, Perseus (geometrici)
  • MÖ 150 - Çin, Çince Matematik Sanatı Dokuz Bölüm (The Nine Chapters on the Mathematical Art) metninde bir Gauss yok etme yöntemi görülür.
  • MÖ 150 - Çin, Horner metodu Çince Matematik Sanatı Dokuz Bölüm (The Nine Chapters on the Mathematical Art) metninde görünür.
  • MÖ 150 - Çin, Negatif sayılar Çince Matematik Sanatı Dokuz Bölüm (The Nine Chapters on the Mathematical Art) metninde görünür.
  • MÖ 150 - MÖ 75 - Fenike, Sidonlu Zenon
  • MÖ 190 - MÖ 120 - Yunanistan, Hipparchus trigonometrinin temellerini geliştirir.
  • MÖ 190 - MÖ 120 - Yunanistan, Hypsicles
  • MÖ 160 - MÖ 100 - Yunanistan, Bithynialı Theodosius
  • MÖ 135 - MÖ 51 - Yunanistan, Posidonius
  • MÖ 206 - MS 8 - Çin, Sayma çubukları
  • MÖ 78 - MÖ 37 - Çin, Jing Fang
  • MÖ 50 - Brahmi rakamlarının (ilk konumsal 10 tabanında sayı sistemi gösterimi) soyundan gelen Hint rakamları Hindistan'da gelişmeye başladı.
  • 1. yüzyılın ortalarında Cleomedes (ancak MS 400)
  • MÖ son yüzyıllar - Hint gök bilimci Lagadha, güneş ve ayın hareketlerini izlemek için kuralları tanımlayan ve astronomi için geometri ve trigonometri kullanan astronomi üzerine Vedik bir metin olan Vedanga Jyotisha'yı yazdı.
  • MÖ 1. yüzyıl - Yunanistan, Geminus
  • MÖ 50 - MS 23 - Çin, Liu Xin

MS 1. binyıl

değiştir
  • 1. yüzyıl - Yunanistan, İskenderiyeli Heron, (Hero) negatif sayıların kareköklerine en eski kısa atıf.
  • y. 100 - Yunanistan, Simirnili Theon
  • 60 - 120 - Yunanistan, Nicomachus
  • 70 - 140 - Yunanistan, İskenderiyeli Menelaus, Küresel trigonometri
  • 78 - 139 - Çin, Zhang Heng
  • y. 2. yüzyıl - Yunanistan, İskenderiyeli Batlamyus Almagest'i yazdı.
  • 132 - 192 - Çin, Cai Yong
  • 240 - 300 - Yunanistan, İznikli Sporus
  • 250 - Yunanistan, Diophantus, bilinmeyen sayılar için kısaltılmış cebir açısından semboller kullandı ve cebir üzerine en eski incelemelerden biri olan Arithmetica'yı yazdı.
  • 263 - Çin, Liu Hui, Liu Hui'nin π algoritmasını kullanarak π'yi hesapladı.
  • 300 - Sıfırın ondalık basamak olarak bilinen en eski kullanımı Hint matematikçiler tarafından tanıtıldı.
  • 234 - 305 - Yunanistan, Porphyry (filozof)
  • 300 - 360 - Yunanistan, Antinouplisli Serenus
  • 335 - 405 - Yunanistan, İskenderiyeli Theon
  • y. 340 - Yunanistan, İskenderiyeli Pappus, altıgen teoremini ve ağırlık merkez teoremini belirtir.
  • 350 - 415 - Bizans İmparatorluğu, Hypatia
  • y. 400 - Hindistan, Bakhshali el yazması Jaina matematikçileri tarafından yazılmıştır; farklı sonsuzluk seviyelerini içeren sonsuz teorisini tanımlar, endekslerin anlaşıldığını ve ayrıca 2 tabanına göre logaritmaları gösterir ve bir milyon kadar büyük sayıların kareköklerini en az 11 ondalık basamağa kadar doğru hesaplar.
  • 300 ila 500 - Sun Tzu tarafından Çin kalan teoremi geliştirilmiştir.
  • 300 ila 500 - Çin, Sun Tzu tarafından çubuk hesabının bir açıklaması yazılmıştır.
  • 412 - 485 - Yunanistan, Proclus
  • 420 - 480 - Yunanistan, Larissalı Domninus
  • d. 440 - Yunanistan, Neapolisli Marinus "Keşke her şey matematik olsaydı."
  • 450 - Çin, Zu Chongzhi π'yi yedi ondalık basamağa kadar hesaplar. Bu hesaplama, yaklaşık bin yıl boyunca en doğru hesaplama olmaya devam ediyor.
  • y. 474 - 558 - Yunanistan, Trallesli Anthemius
  • 500 - Hindistan, Aryabhata ilk önce trigonometrik fonksiyonları ve bunların yaklaşık sayısal değerlerini hesaplama yöntemlerini tanıtan Aryabhata-Siddhanta'yı yazdı. Sinüs ve kosinüs kavramlarını tanımlar ve ayrıca sinüs ve kosinüs değerlerinin en eski tablolarını içerir (0 ila 90 derece açılar arasında 3,75 derecelik aralıklarla).
  • 480 - 540 - Yunanistan, Ascalonlu Eutocius
  • 490 - 560 - Yunanistan, Kilikyalı Simplicius
  • 6. yüzyıl - Aryabhata, güneş tutulması ve ay tutulması gibi astronomik sabitler için doğru hesaplamalar verir, π'yi dört ondalık basamağa kadar hesaplar ve modern yönteme eşdeğer bir yöntemle doğrusal denklemlere tam sayı çözümler elde eder.
  • 505 - 587 - Hindistan, Varāhamihira
  • 6. yüzyıl - Hindistan, Yativṛṣabha
  • 535 - 566 - Çin, Zhen Luan
  • 550 - Hindu matematikçiler, konumsal gösterimde Hint rakam sisteminde sıfıra sayısal bir temsil verdi.
  • 7. yüzyıl - Hindistan, Bhaskara I sinüs fonksiyonunun rasyonel bir yaklaşımını verir.
  • 7. yüzyıl - Hindistan, Brahmagupta, ikinci dereceden belirsiz denklemleri çözme yöntemini icat etti ve astronomik problemleri çözmek için cebri kullanan ilk kişi oldu. Ayrıca çeşitli gezegenlerin hareketleri ve yerlerinin hesaplanması, bunların doğuşu ve batışı, birleşimleri ve güneş ve ay tutulmalarının hesaplanması için yöntemler geliştirdi.
  • 628 - Brahmagupta, sıfırın net biçimde açıklandığı ve modern basamak değerli Hint rakam sisteminin tamamen geliştirildiği Brahma-sphuta-siddhanta'yı yazdı. Aynı zamanda hem negatif hem de pozitif sayıları işlemek için kurallar, karekök hesaplama yöntemleri, doğrusal ve ikinci dereceden denklemleri çözme yöntemleri ve serileri toplama kuralları, Brahmagupta özdeşliği ve Brahmagupta teoremi verir.
  • 602 - 670 - Çin, Li Chunfeng
  • 8. yüzyıl - Hindistan, Virasena, Fibonacci dizisi için açık kurallar verir, sonsuz bir prosedür kullanarak kesik bir piramidin hacminin türetilmesini verir ve ayrıca 2 tabanına göre logaritma ile ilgilenir ve yasalarını bilir.
  • 8. yüzyıl - Hindistan, Shridhara, bir kürenin hacmini bulma kuralını ve ayrıca ikinci dereceden denklemleri çözme formülünü verir.
  • 773 - Irak, Kanka Brahmagupta'nın Brahma-sphuta-siddhanta'sını Hindistan'ın aritmetik astronomi sistemini ve Hint sayısal sistemini açıklamak için Bağdat'a getirdi.
  • 773 - Muhammed bin İbrahim el-Fezari, Brahma-sphuta-siddhanta'yı Abbasi Kral Halife El-Mansur'un isteği üzerine Arapçaya çevirdi.
  • 9. yüzyıl - Hindistan, Govindsvamin, Newton-Gauss interpolasyon formülünü keşfeder ve Aryabhata'nın sinüsler tablosunun kesirli kısımlarını verir.
  • 810 - Beyt'ül Hikmet (Bilgelik Evi), Yunanca ve Sanskritçe matematik çalışmalarının Arapçaya çevrilmesi için Bağdat'ta inşa edildi.
  • 820 - El-Harizmi - Cebir'in babası olan İranlı matematikçi, daha sonra Cebir (Algebra) olarak çevrilen ve doğrusal ve ikinci dereceden denklemleri çözmek için sistematik cebirsel teknikleri tanıtan Al-Jabr’i yazdı. Aritmetik hakkındaki kitabının çevirileri, 12. yüzyılda Batı dünyasına Hindu-Arapça ondalık sayı sistemini tanıtacak. Algoritma terimi de adını ondan almıştır.
  • 820 - İran, Mâhânî, küpü iki katlına çıkarma gibi geometrik problemleri cebirdeki problemlere indirgeme fikrini tasarladı.
  • y. 850 - Irak, El-Kindi kriptografi üzerine yazdığı kitabında kriptanaliz ve frekans analizine öncülük etti.
  • y. 850 - Hindistan, Mahāvīra, bir kesri birim kesirlerin toplamı olarak ifade etmek için sistematik kurallar veren Ganita Sara Samgraha olarak da bilinen Gaṇitasārasan̄graha'yı yazdı.
  • 895 - Suriye, Sabit ibn Kurra: Orijinal çalışmasının hayatta kalan tek parçası, kübik denklemlerin çözümü ve özellikleri üzerine bir bölüm içeriyor. Ayrıca Pisagor teoremini genelleştirdi ve dost sayı çiftlerinin bulunabileceği teoremi keşfetti (yani, her biri diğerinin uygun bölenlerinin toplamı olacak şekilde iki sayı).
  • y. 900 - Mısır, Ebu Kamil Şuca   olarak sembollere ne yazacağımızı anlamaya başlamıştı.
  • 940 - İran, Ebu'l-Vefa el-Buzcani, Hint rakam sistemini kullanarak kökleri alır.
  • 953 - Hint-Arap sayı sisteminin aritmetiği ilk başta bir toz tahtası (İngilizcedust board: bir tür elde tutulan yazı tahtası) kullanımını gerektiriyordu çünkü "yöntemler, hesaplamada sayıların hareket ettirilmesini ve hesaplama ilerledikçe bazılarının silip çıkarılmasını gerektiriyordu." Ebu'l-Hasan el-Uklidisi, bu yöntemleri kalem ve kağıt kullanımı için değiştirdi. Sonunda, ondalık sistemin sağladığı ilerlemeler, bölge ve dünya genelinde standart olarak kullanımına yol açtı.
  • 953 - İran, El-Kereci "cebri geometrik işlemlerden tamamen kurtaran ve bunları bugün cebrin merkezinde yer alan aritmetik işlem türleriyle değiştiren ilk kişidir.  ,  ,  , ... ve  ,  ,  , ... tek terimlilerini ilk tanımlayan ve bunlardan herhangi ikisinin çarpımları için kurallar veren kişidir. Yüzlerce yıldır gelişen bir cebir okulu başlattı." Ayrıca, "ondalık sisteme dayalı sayısal analizin geliştirilmesinde önemli bir faktör olan tam sayı üsleri" için binom teoremini keşfetti.
  • 975 - Mezopotamya, El-Battani Hint sinüs ve kosinüs kavramlarını, tanjant, sekant ve bunların ters fonksiyonları gibi diğer trigonometrik oranlara genişletti. Aşağıdaki formülleri türetti:  ve  

Sembolik dönem

değiştir

1000–1500

değiştir

15. yüzyıl

değiştir
  • 1400 - Madhava ters tanjant fonksiyonu için seri genişlemeyi, arktan ve sin için sonsuz seriyi ve çemberin çevresini hesaplamak için birçok yöntemi keşfetti ve bunları π'yi 11 ondalık basamağa kadar doğru şekilde hesaplamak için kullandı.
  • y. 1400 - Gıyaseddin Cemşid el-Kaşi "sadece cebirsel sayıları yaklaştırmak için değil, aynı zamanda π gibi gerçek sayılar için de ondalık kesirlerin geliştirilmesine katkıda bulunmuştur. Ondalık kesirlere katkısı o kadar büyük ki yıllarca onların mucidi olarak kabul edildi. Bunu ilk yapan olmasa da, el-Kaşi n'inci kökleri hesaplamak için bir algoritma verdi; bu, yüzyıllar sonra [Paolo] Ruffini ve [William George] Horner tarafından verilen yöntemlerin özel bir örneğidir." Ayrıca aritmetik ve Arap rakamlarında ondalık nokta gösterimini kullanan ilk kişidir. Çalışmaları arasında Aritmetiğin Anahtarı (The Key of arithmetics), Matematikte keşifler (Discoveries in mathematics), Ondalık nokta (The Decimal point) ve Sıfırın faydaları (Benefits of the Zero) bulunmaktadır. Sıfırın faydaları’nın içeriği bir girişten sonra gelen beş denemedir: Tam sayı aritmetiği üzerine (On whole number arithmetic), Kesirli aritmetik üzerine (On fractional arithmetic), Astroloji üzerine (On astrology), Alanlar hakkında (On areas) ve Bilinmeyenleri bulma [bilinmeyen değişkenler] (On finding the unknowns [unknown variables]). Ayrıca Sinüs ve kiriş üzerine tez (Thesis on the sine and the chord) ve Birinci derece sinüs bulma üzerine tez (Thesis on finding the first degree sine) adlı eserleri yazdı.
  • 15. yüzyıl - İbnü’l-Benna el-Merraküşi ve el-Kalasadi, cebir ve genel olarak matematik için sembolik gösterimi tanıttı.[15]
  • 15. yüzyıl - Nilakantha Somayaji, Kerala okulu matematikçisi, sonsuz seriler, cebir problemleri ve küresel geometri üzerine çalışmalar içeren Aryabhatiya Bhasya'yı yazdı.
  • 1424 - Gıyaseddin Cemşid el-Kaşi, iç teğet ve çevrel çokgenleri kullanarak π'yi on altı ondalık basamağa kadar hesaplar.
  • 1427 - El-Kaşi, ondalık kesirler üzerinde büyük derinlikli çalışmalar içeren Aritmetiğin Anahtarı (The Key to Arithmetic) adlı eserini tamamladı. Birkaç geometrik problem de dahil olmak üzere çeşitli problemlerin çözümüne aritmetik ve cebirsel yöntemler uyguladı.
  • 1464 - Regiomontanus, trigonometriyi matematiğin ayrı bir dalı olarak ele alan en eski metinlerden biri olan De Triangulis omnimodus’u yazdı.
  • 1478 - İsimsiz bir yazar Treviso Arithmetic adlı eseri yazdı.
  • 1494 - Luca Pacioli Summa de arithmetica, geometria, proportioni et proportionalità adlı eseri yazdı; bilinmeyen için "co" (cosa) kullanarak ilkel sembolik cebri tanıttı.

Modern dönem

değiştir

16. yüzyıl

değiştir
  • 1501 - Nilakantha Somayaji Tantrasamgraha'yı yazdı.
  • 1520 - Scipione dal Ferro, "depresif" kübik denklemleri (x2 terimi olmayan kübik denklemler) çözmek için bir yöntem geliştirdi, ancak yayınlamadı.
  • 1522 - Adam Ries, Arap rakamlarının kullanımını ve Roma rakamlarına göre avantajlarını anlattı.
  • 1535 - Niccolò Tartaglia, bağımsız olarak depresif kübik denklemleri çözmek için bağımsız olarak bir yöntem geliştirdi, ancak o da yayınlamadı.
  • 1539 - Gerolamo Cardano, Tartaglia'nın depresif kübik çözme yöntemini öğrenir ve kübikleri depresif hale dönüştürmek için bir yöntem keşfeder, böylece tüm kübik denklemleri çözmek için bir yöntem geliştirir.
  • 1540 - Lodovico Ferrari dördüncü dereceden denklemi çözdü.
  • 1544 - Michael Stifel, Arithmetica integra'yı yayınladı.
  • 1545 - Gerolamo Cardano, karmaşık sayılar fikrini tasarladı.
  • 1550 - Bir Kerala okul matematikçisi olan Jyeshtadeva, birçok matematik teoreminin ve formülünün detaylı türetimlerini veren dünyanın ilk kalkülüs metni olan Yuktibhāṣā'yı yazdı.
  • 1572 - Rafael Bombelli Cebir (Algebra) tezini yazıyor ve kübik denklemleri çözmek için imajiner sayıları kullanıyor.
  • 1584 - Zhu Zaiyu eşit tamperaman hesaplar.
  • 1596 - Ludolf van Ceulen, iç teğet ve çevrel çokgenleri kullanarak π'yi yirmi ondalık basamağa kadar hesapladı.

17. yüzyıl

değiştir

18. yüzyıl

değiştir

19. yüzyıl

değiştir

Çağdaş dönem

değiştir

20. yüzyıl

değiştir

[19]

21. yüzyıl

değiştir

Ayrıca bakınız

değiştir

Kaynakça

değiştir
  1. ^ Sean Henahan. "Art Prehistory". 19 Temmuz 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 10 Ocak 2002. 
  2. ^ "How Menstruation Created Mathematics". Tacoma Community College. 23 Aralık 2005 tarihinde kaynağından arşivlendi. 
  3. ^ "OLDEST Mathematical Object is in Swaziland". 21 Kasım 2001 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Mart 2015. 
  4. ^ "an old Mathematical Object". 5 Nisan 2002 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Mart 2015. 
  5. ^ a b "Egyptian Mathematical Papyri - Mathematicians of the African Diaspora". 15 Ağustos 2000 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Mart 2015. 
  6. ^ Chrisomalis, Stephen (18 Ocak 2010). Numerical Notation: A Comparative History (İngilizce). Cambridge University Press. ISBN 978-0-521-87818-0. 
  7. ^ "Before Pythagoras: The Culture of Old Babylonian Mathematics". isaw.nyu.edu. 25 Mayıs 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Nisan 2023. 
  8. ^ z3264452 (25 Ağustos 2017). "Written in stone: world's first trigonometry revealed in ancient Babylonian tablet". UNSW Newsroom. 31 Ağustos 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Nisan 2023. 
  9. ^ Biggs, Norman; Keith Lloyd; Robin Wilson (1995). "44". Ronald Graham; Martin Grötschel; László Lovász (Ed.). Handbook of Combinatorics (Google book). MIT Press. ss. 2163-2188. ISBN 0-262-57172-2. Erişim tarihi: 8 Mart 2008. 
  10. ^ Carl B. Boyer, A History of Mathematics, 2nd Ed.
  11. ^ Corsi, Pietro; Weindling, Paul (1983). Information sources in the history of science and medicine. Butterworth Scientific. ISBN 9780408107648. 14 Temmuz 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Temmuz 2014. 
  12. ^ Victor J. Katz (1998). History of Mathematics: An Introduction, s. 255–259. Addison-Wesley. 0-321-01618-1.
  13. ^ F. Woepcke (1853). Extrait du Fakhri, traité d'Algèbre par Abou Bekr Mohammed Ben Alhacan Alkarkhi. Paris.
  14. ^ O'Connor, John J.; Robertson, Edmund F., "Abu l'Hasan Ali ibn Ahmad Al-Nasawi", MacTutor Matematik Tarihi arşivi 
  15. ^ a b c O'Connor, John J.; Robertson, Edmund F., "Arabic mathematics : forgotten brilliance?", MacTutor Matematik Tarihi arşivi 
  16. ^ a b "Various AP Lists and Statistics". 28 Temmuz 2012 tarihinde kaynağından arşivlendi. 
  17. ^ D'Alembert (1747) "Recherches sur la courbe que forme une corde tenduë mise en vibration" (Researches on the curve that a tense cord [string] forms [when] set into vibration), Histoire de l'académie royale des sciences et belles lettres de Berlin, vol. 3, pages 214-219.
  18. ^ "Arşivlenmiş kopya". 6 Ağustos 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 31 Ekim 2020. 
  19. ^ Paul Benacerraf and Hilary Putnam, Cambridge University Press, Philosophy of Mathematics: Selected Readings, 0-521-29648-X
  20. ^ Heideman, Michael T., et al. “Gauss and the History of the Fast Fourier Transform.” Archive for History of Exact Sciences, vol. 34, no. 3, 1985, ss. 265–277. JSTOR, www.jstor.org/stable/41133773.
  21. ^ Laumon, G.; Ngô, B. C. (2004), Le lemme fondamental pour les groupes unitaires, arXiv:math/0404454 $2, Bibcode:2004math......4454L 
  22. ^ "UNH Mathematician's Proof Is Breakthrough Toward Centuries-Old Problem". University of New Hampshire. 1 Mayıs 2013. 7 Haziran 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Mayıs 2013. 
  23. ^ "Announcement of Completion". Project Flyspeck. Google Code. 11 Eylül 2015 tarihinde kaynağından arşivlendi. 
  24. ^ Bob Yirk. "Team announces construction of a formal computer-verified proof of the Kepler conjecture". 21 Ağustos 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Ağustos 2014. 
  25. ^ "Proof confirmed of 400-year-old fruit-stacking problem". New Scientist. 20 Nisan 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Ağustos 2014. 
  26. ^ "A formal proof of the Kepler conjecture". arXiv. 17 Eylül 2017 tarihinde kaynağından arşivlendi. 
  27. ^ "Solved: 400-Year-Old Maths Theory Finally Proven". Sky News. Erişim tarihi: 12 Ağustos 2014. 16:39, UK 

Konuyla ilgili yayınlar

değiştir

Dış bağlantılar

değiştir